TLV. PowerTrap.


MODEL GP21F CARBON STEEL

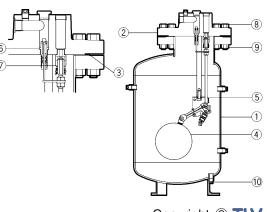
MECHANICAL PUMP WITH RETROFITTABLE MECHANISM FOR CONDENSATE REMOVAL AND RECOVERY

Features

Pump for a wide range of applications. Ideal for condensate removal from vented receivers and sump drainage.

- 1. Handles high-temperature condensate without cavitation.
- 2. No electric power or additional level controls required, hence INTRINSICALLY SAFE.
- 3. Pump will operate with a low filling head.
- 4. Durable nickel-based alloy compression coil spring.
- 5. All internal parts are suspended from the trap cover and can be removed upward in one piece.
- 6. High quality stainless steel internals and hardened working surfaces ensure reliability
- 7. Cycle Counter installable as option.

Specifications

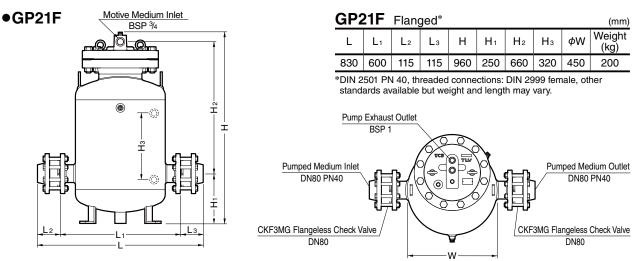

Model			GP21F		
Connection	Pumped Medium Inlet & Outlet		Flanged DIN 2501 PN 40*		
	Motive Medium & Pump Exhaust		Screwed BSP DIN 2999*		
Size	Pumped Medium Inlet × Outlet		DN 80 × DN 80		
	Motive Medium Inlet		3/4"		
	Pump Exhaust Outlet		1″		
Maximum Operating Pressure (barg) PMO		PMO	21		
Maximum Operating Temperature (°C) TMO		TMO	220		
Motive Medium Pressure Range (barg)			0.5 – 21		
Maximum Allowable Back Pressure			0.5 bar less than motive medium pressure used		
Volume of Each Discharge Cycle (ℓ)			approximately 40		
Motive Medium**			Saturated Steam	ed Steam	
Pumped Medium***			Steam Condensate, Water		
* Other standards available ** Do not use with toxic, flammable or otherwise hazardous fluids.			1 bar = 0.1 MPa		

* Other standards available ** Do not use with toxic, flammable or otherwise hazardous fluids. *** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids. PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (barg) PMA: 21

Maximum Allowable Temperature (°C) TMA: 220

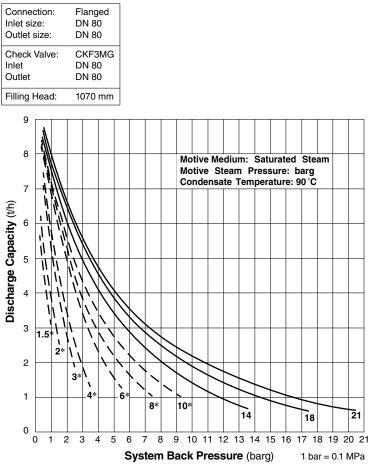
CAUTION To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

_						
No.	Description		Material	DIN*	ASTM/AISI*	
1	Body		Carbon Steel HII	1.0425	A415 Gr.60	
2	Cover		Cast Steel A216 Gr. WCB	1.0619	—	
3	Cover Gasket		Graphite/ Stainless Steel SUS316L	_/ 1.4404	-/ AISI316L	
4	Float		Stainless Steel SUS316L/ SUS304	1.4404/ 1.4301	AISI316L/ AISI304	
5	Snap-action Unit		Stainless Steel	—	_	
6	Motive Medium Intake Valve Unit	Intake Valve	Stainless Steel SUS440C/ SUS303	1.4125/ 1.4305	AISI440C/ AISI303	
		Valve Seat	Stainless Steel SUS440C	1.4125	AISI440C	
7	Exhaust Valve Unit	Exhaust Valve	Stainless Steel SUS440C/ SUS303	1.4125/ 1.4305	AISI440C/ AISI303	
		Valve Seat	Stainless Steel SUS420F	1.4028	AISI420F	
8	Bolt		Steel (DIN 931 Class 5.6)	—	—	
9	Nut		Steel (DIN 934 Class 5.6)	—	—	
10	Drain Plug		Carbon Steel S25C	1.1158	AISI1025	
1	Flange Assembly **, ***		Carbon Steel C22.8	1.0460	A105	
12	Check Valve***	CKF3MG	Cast Stainless Steel A351Gr.CF8	1.4312	—	


Copyright © TLV

* Equivalent materials ** Consisting of bolts, nuts, butt-weld flange, gaskets *** Shown overleaf

TLV

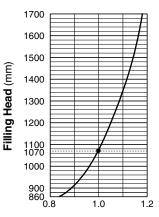

Consulting & Engineering Service

Dimensions

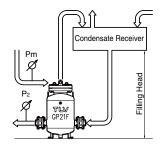
Note: All plug holes BSP 1/2

Discharge Capacity

* GP10F is recommended for use with motive pressures of 10 barg or less.


NOTE:

- To achieve the above capacities with the standard GP21F configuration, TLV CKF3MG check valves (supplied with the GP21F) must be used at the pumped medium inlet and outlet.
- Motive medium pressure minus back pressure must be greater than 0.5 bar.
- In closed system applications, the motive medium must be compatible with the liquid being pumped.


•A strainer must be installed at the motive medium and pumped medium inlets.

Correction Factor

For GP21F with check valve CKF3MG, installed with filling head other than 1070 mm (minimum filling head: 860 mm)

• Illustration of Filling Head and Pressures

•The discharge capacity is determined by the motive medium, motive medium pressure (P_m) and back pressure (P₂).

Make sure that: Discharge Capacity × Correction Factor > Required Flow Rate

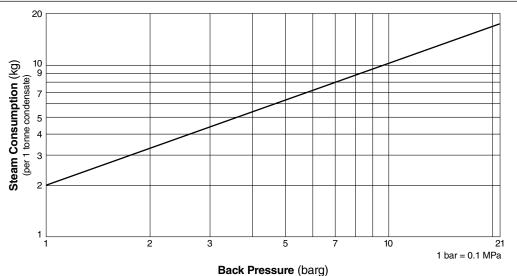
TLV

Size of Receiver / Reservoir

The receiver/reservoir must have a capacity sufficient to store the condensate produced during the **PowerTrap** operation and discharge. A receiver will generally be larger than a reservoir because it must handle the condensate both as a liquid and as flash steam, and separate one from the other so that only condensate is sent to the **PowerTrap**.

(1) Size of Receiver (flash steam is involved)

(Length: 1 m)

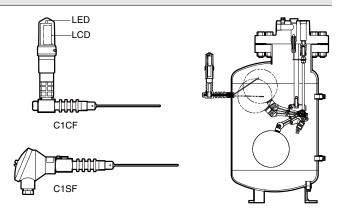

()				
Flash steam up to	Receiver diameter	Vent pipe diameter		
kg/h	mm	mm		
300	350	125		
400	400	125		
500	400	150		
700	450	200		
800	500	200		
1000	550	200		
1100	550	250		
1400	600	250		
1500	600	250		

If flash steam is condensed before it enters the receiver/reservoir, compare tables (1) and (2) and choose the larger of the two sizes.

2 Size of Reservoir (flash steam is not involved)

Amount of condensate	Reservoir diameter (mm) and length (m)							
kg/h	50	80	100	150	200	250	300	350
300 or less	1.9 m	0.9						
400		1.1	0.7					
500		1.4	0.8					
600		1.7	1.0					
800			1.3	0.6				
1000			1.6	0.8				
1500				1.1	0.7			
2000				1.5	0.9	0.6		
3000					1.3	0.9	0.6	
4000					1.7	1.1	0.8	0.7
5000						1.4	1.0	0.8
6000						1.7	1.2	1.0
7000						2.0	1.4	1.1
8000							1.6	1.3
9000							1.8	1.4
10000							1.9	1.6

Steam Consumption (Motive Medium)



Cycle Counter (option)

Two types of counter can be installed on the GP21F to monitor the number of pumping cycles and help to determine the timing of maintenance, or estimate the volume of pumped condensate.

- C1CF (Counter Unit Type) : Self-contained standalone unit. Includes an LCD counter display and an operation indicator LED.
- C1SF (Terminal Box Type) : Designed for use with remote monitoring equipment and systems.

Intrinsically safe models are also available. See the Cycle Counter SDS for further details.

Copyright © TLV

Consulting & Engineering Service

Memo:

Manufacturer

Copyright © TLV

http://www.tlv.com

SDS U2404-10 Rev. 4/2014

Products for intended use only. Specifications subject to change without notice.